Viral suppression: How well are we doing?

Lucas Hermans
PhD student University Medical Center Utrecht (The Netherlands)
Visiting researcher WRHI (Johannesburg, SA)
Medical Officer, Bethesda Hospital (KwaZulu-Natal, SA)
Fast-Track Targets

90% of all living with HIV will know their HIV status

90% of all living with HIV will receive sustained antiretroviral therapy

90% of all receiving antiretroviral therapy will have durable viral suppression

And 95% by 2030!
High suppression rates are possible!

>95% suppression achievable with INSTI-based ART in recent RCTs

Sax et al, NEJM, 2016

Venter et al, NEJM, 2019
But trials cannot be generalized to real world

Randomized clinical trial:
• Preselected populations
• Strict monitoring
• Follow-up for 1-3 years
• Motivation to participate

Real world:
• Everyone
• Monitoring dependent on setting
• Lifelong follow-up
• Burden of repeated clinic visits

Real world data is required!
How do we measure viral suppression

• What data source(s) do we use?

• How do we define the population on treatment?
 • on treatment
 • intention-to-treat

• What viral load threshold do we use?
 • 1000 copies/mL
 • 50 copies/mL
Data source

• **National cohorts** have the unique ability to capture the entire treated population of a country, but are often unavailable.

• **Surveys** are a cost-effective way to collect data on the cascade, but may suffer from various forms of bias.

• **Laboratory data** are a valuable additional data source, but lack clinical information and follow-up.
How to measure suppression

• What data source(s) do we use?

• How do we define the population on treatment?
 • on treatment
 • intention-to-treat

• What viral load threshold do we use?
 • 1000 copies/mL
 • 50 copies/mL
On-treatment vs intention-to-treat

• Systematic reviews on virological suppression in observational studies in LMIC
 • 2010¹ and 2015²

• Suppression at 24 months
 • 84.4% on treatment
 • 64.6% intention-to-treat

• LTFU occurs in 29% after 24 months³

How to measure suppression

• What data source(s) do we use?

• How do we define the population on treatment?
 • on treatment
 • intention-to-treat

• What viral load threshold do we use?
 • 1000 copies/mL
 • 50 copies/mL
Viral load threshold

• Data from 69,454 patients on 1st line EFV-based ART
• 57 rural and urban clinics in four provinces in South Africa
• Virological suppression per threshold (at month 24):
 • 89.1% < 1000 copies/mL
 • 75.6% < 50 copies/mL

Hermans et al, CROI, 2018
90% suppression – examples of success

• Switzerland

• Sweden

• Botswana
Achieving 90% suppression - Switzerland

- Data derived from Swiss HIV Cohort Study (SHCS)
 - National cohort with high coverage
 - Cross-sectional analysis 2012

- 96% (8888/9190) virological suppression
 - below 200 copies/mL

Fig. 1. HIV care cascade for Switzerland in 2012. Numbers and proportions (estimated total of infected individuals = 100%). Red horizontal lines indicate the 2014 UNAIDS/WHO targets of 90% of the previous level, translating into 90, 71, and 64% of the total. Columns are sub-divided by reliability, SHCS, Swiss HIV Cohort Study. Vertical error bars indicate the margins of uncertainty.

Kohler et al, AIDS, 2015
Achieving 90% suppression - Sweden

- Data derived from national cohort
 - Swedish InfCare HIV Cohort Study
 - Covering all HIV treatment sites since 2008
 - Cross-sectional analysis 2015

- 94.7% (6053/6395) suppression
 - below 50 copies/mL

Fig. 1 The Swedish HIV continuum of care 2015, showing the estimated proportion of all HIV-1-infected subjects in Sweden achieving various goals of engagement in HIV care. Red horizontal lines indicate 2014 Joint United Nations Programme on HIV/AIDS (UNAIDS)/World Health Organization (WHO) 90-90-90 targets. Numbers above bars indicate the proportion of the number at the previous level; numbers within bars indicate the proportion of all HIV-infected individuals. ART, antiretroviral therapy.

Gisslen et al, HIV Medicine, 2017
Achieving 90% Suppression - Botswana

- Data from a household survey
 - Botswana Combination Prevention Project (Ya Tsie Study)
 - Household survey performed at project baseline

- 81.5% (12610/15475) included
- 28.5% (3596/12610) HIV+
- 83.3% (2995/3596) aware of status
- 87.4% (2617/2995) on ART
- 93.1% (2428/2617) virological suppression (<40 cp/mL)
How do we get to 90% suppression? (and beyond)

- Efficacious ART (see presentation dr. Moorhouse)

- Guarantee rapid ART initiation in newly diagnosed HIV+ patients\(^1\)

- Early identification and tailored management of patients at increased risk of non-adherence and LTFU\(^2\)

- **Viral load awareness**

Viral load awareness

• Data from SA cohort
 • 69,454 patients on EFV-based first-line ART (57 clinics, 4 provinces)

• Viral rebound is not followed by rapid healthcare worker response
 • Only 41.5% of patients with failure were switched during follow-up
 • Switch was performed at a median of 68 weeks after first detection of rebound

Hermans et al, CROI, 2018
Delay in response to rebound

• Patient delay?

• Healthcare worker delay?
 • Not checking results / results unavailable
 • Insufficient awareness of guideline recommendations

• Healthcare worker doubt?
 • Patients may resuppress even after confirmed failure of first-line EFV-based ART
 • Testing to confirm presence of resistance and/or of treatment adherence unavailable
Any VL > 50 c/mL is a medical emergency and requires action:

A VL of more than 50 c/mL means that **viral replication** is taking place **in the presence of drugs**, and this puts the patient at risk of developing **treatment resistance**

A **thorough assessment** is essential for any patient with a viral load measuring ≥ 50 c/ml
Conclusions

• High rates of virological suppression can be achieved

• Study methods and definition of suppression may substantially impact reported suppression rates

• Achieving high suppression rates requires timely acting on viral rebound
Translational Virology, UMC Utrecht
Acknowledgements

ITREMA investigator team
Annemarie Wensing
Monique Nijhuis
Rob Schuurman
Mirjam Kretzschmar
Kiki Tesselaar
Sigrid Vervoort
Hugo Tempelman
Francois Venter
John de Wit
David Burger
Rob ter Heine

Advisory board
Douglas Richman
Elliot Raizes
Andy Gray
Osama Hamoudah
Jonathan Schapiro
Annelies van der Vorm

Project collaborators
Sergio Carmona
Kim Steegen
Ndlovu Research Consortium

Ndlovu Research Consortium

All participants, clinical and research staff at Ndlovu Care Group

Supported by The Netherlands Organisation for Scientific Research (ZonMW) and NOW-WOTRO Science for global development